

International Journal of Advances in Engineering and Management (IJAEM)

Volume 2, Issue 9, pp: 624-629 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0209624629 | Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 624

A Comprehensive Analysis of Kernel Management

Guna R Ivan herald. W Mithunvinayak H, Dr.M. Sujithra M.C.A,

M.Phil., PhD, Dr.A.D. Chitra M.C.A, M.Phil., PhD,
2

nd
Year,M.Sc Software systems(Integrated) Coimbatore Institute of Technology,Coimbatore.

Assistant Professor, Department of Data Science, Coimbatore Institute of Technology, Coimbatore

Assistant Professor, Department of Software Systems, Coimbatore Institute of Technology, Coimbatore

--

Date of Submission: 15-11-2020 Date of Acceptance: 30-11-2020

--

ABSTRACT: This paper presents a new

architecture of operating system kernel. The new

architecture discussed is based on modularity

concept and consideration of the shortcomings of

traditional kernel, and the operating system kernel

is divided into three independent modules —

executing module, policy module and monitoring

module. Policy module determines the policy of

process scheduling separated from traditional

kernel. Monitoring module is responsible for

monitoring processes, handling system error and

detecting of important data. These three modules

work independently and communicate with each

other by interrupts to ensure the safety of CPU

time, important system data structures and user

data. As a result, these three independent modules

improve the expandability and simplify

maintenance of the operating system kernel and

enhance the robustness of the system. In this paper,

techniques’ implementation is given and important

data structures are defined. Finally, potential

problems of this architecture are also discussed.

 Previous article in issue

 Next article in issue

Keywords:

Operating system

Kernel

Modularity

System safety

I. INTRODUCTION:
1.1 Classic kernel architecture:

Operating system implements two basic

functions below,It must be simply use as extension

machine and it must manage and distribute all

kinds of resources reasonably as the manager of the

computer system. In addition, some operating

system also takes charge of the computer system’s

safety and provides application-specific services,

such as networking, graphic interface and so on

Linux and Windows family operating systems that

are based on NT are most typical operating systems

at the moment, but Linux focus on executing

efficiency while Windows family pay more

attention to convenient use. As to kernel

architecture, Linux is a monolithic kernel operating

system, and the whole kernel is very compact.

Maintaining for this type of kernel is difficult, and

the kernel takes up more memory space in running

time. The architecture of Linux is shown in .

Download :Download full-size image

Fig.1: Architecture of Linux.

On the other side, Windows is a

microkernel operating system. As a result, it makes

many operating system functions modularity and is

easy for maintaining and extension for operating

system. However, the system running efficiency is

lower than monolithic kernel. It is worth noting that

the graphics drivers of Windows operating system

are directly running on the hardware, thus

Windows have better graphics capabilities, which

makes up for the lower running efficiency. The

architecture of Windows operating system is shown

in

https://www.sciencedirect.com/science/article/pii/S0895717709003598
https://www.sciencedirect.com/science/article/pii/S0895717709004129
https://ars.els-cdn.com/content/image/1-s2.0-S0895717709003409-gr1.jpg

International Journal of Advances in Engineering and Management (IJAEM)

Volume 2, Issue 9, pp: 624-629 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0209624629 | Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 625

Download :Download full-size image

Fig.2.Architecture of Windows NT.

Actually, it is difficult to distinguish

between monolithic kernel and microkernel

because there is one trend of kernel

developmentthe services provided by operating

system that has a monolithic kernel are more

modular, that is to say, this kind of operating

system allow dynamic loading, while the services

provided by operating system that has a

microkernel are more integrated into kernel. So, the

kernel architectures of almost all the current

operating systems are hybrid kernels that are

between monolithic kernels and microkernels.

Linux and Windows is the case. Besides, there are

peculiar kernels (such as nanokernels and

exokernels) that will not be discussed in this paper.

1.2 Existing problems of current kernel

No matter for monolithic kernel,

microkernel, or hybrid kernel, there is only one

kernel in the operating system. This kernel not only

monopolizes the rights of assigning all the system

resources, but also holds the actual executing rights

and safety monitoring. So the existing problems of

current operating system kernel architecture are as

follows at least: firstly, to some degree, single

program (even if it is operating system)

monopolizes all the software or hardware resources

of system. Secondly, operating system is also a

program that often makes mistakes, such as system

error, system halt, BSOD and so on. If an error

occurs in the kernel level, the whole system would

crash. Finally, some applications can make use of

some mechanisms in the operating system to

capture the CPU time to execute all kinds of

malicious or destructive operations, such as

tampering data, monopolizing resources, even

causing the system crash or user data missing.

To fully utilize the system resource, the operating

system kernel’s monopolization of the system

resources must be changed, and the kernel error or

bugs must be decreased and not causing the system

crash. So, we need new operating system kernel

architecture.

II. NEW ARCHITECTURE OF

OPERATING SYSTEM KERNEL
In allusion to the problems of single kernel

described above, we construct a new kernel

architecture using modularity concepts and

methods.

2.1Construct the new kernel

Policy for assigning the CPU time is

separated from the traditional kernel, and a new

kernel module is constructed, which works as

policy module; then the monitoring and safety

mechanisms are separated from the traditional

kernel, combined with some exception handling

mechanisms. Therefore another new kernel module

is constructed, which can be named monitoring

module.

The CPU time is the most important

resource in the computer system. All the computer

system functions are implemented based on it. So it

is very crucial for the system to make it

independent and reasonably assign. Thus we

construct policy module as a single kernel module.

We expect that system can maintain in the stable

basis not only when errors occur in applications

and system services level but also in the traditional

kernel level. Therefore we construct monitoring

module as a single module. Besides some safety

and monitoring mechanisms are added to the

monitoring module, the remaining kernel is still

responsible for the process control (creating

process, switching process and IPC), memory

allocation, I/O control and so on. Thus it is the third

kernel, executing module.

Here we get the modular kernel

architecture, but it is different from that in the

hybrid kernel or microkernel. The modularity of

hybrid kernel or microkernel is modularity in

functions. That is to say, the services have the

modularity characteristic but in one single kernel

which does not have modularity characteristic;

while the modularity of kernel described above

https://ars.els-cdn.com/content/image/1-s2.0-S0895717709003409-gr2.jpg

International Journal of Advances in Engineering and Management (IJAEM)

Volume 2, Issue 9, pp: 624-629 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0209624629 | Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 626

consists of three separated kernel modules. It is real

modularity in kernel level.

If we regard the computer system as state,

we can make an interesting analogy shown

in Fig. 3. From the diagram, we can get that the

architecture of new kernel that has three separated

kernel module is very similar to state organizations

that is based on the Separation of Power Theory.

Download : Download full-size image

Fig.3.Analogy between computer system and state.

2.2.Communication between the three kernel

modules

Interrupt mechanism is universally

adopted in modern computer systems. In traditional

kernel, process scheduling is implemented by timer

interrupt and active call for functions are used for

process scheduling. The functions of monitoring

and safety in traditional kernel work in a similar

way.

To unify the interfaces between the three

kernel modules, the interrupt mechanism is

employed for communication among the three

modules. When executing module need to schedule

the processes, no matter the routine preemption for

CPU time or active call for process scheduling,

executing module transmit the scheduling request

to policy module through specific interrupt. Policy

module decides which process to be scheduled

according to given policy. Then executing module

controls the process control submodule to

implement process switching using the value

returned by interrupt. Thus, communication is

completed between executing module and policy

module. The procedure of communication between

executing module and monitoring module is similar

to this. So we can get new kernel architecture of

operating system shown inFig.4.

Download : Download full-size image

Fig.4.Kernel architecture of operating system based

on modularity concept.

Detailed communication mechanism,

necessary techniques and mechanisms, and

important data structures of implementation are

also discussed.

III. THE THREE KERNEL

MODULES
As shown inFig.4, the kernel operating

system is divided into three independence kernel

modules. The executing module is the controlling

core of functions and management. Policy module

responds to the process scheduling request passed

by interrupt, and decides which process can gain

the CPU time; finally executing module completes

the process switching. When there is an error, no

matter from applications or executing module, the

executing module will initiates an interrupt and

being responded by monitoring module.

Monitoring module will then make a variety of

operations according to error types to maintain

system safety. In addition, monitoring module

detects the important system data structure and file

system to protect system and user data.

3.1.Executing module

The remaining part of traditional kernel

after separating process scheduling policy,

monitoring of system and detecting functions, is the

executing module. It implements process control,

memory management, I/O operation control, file

system management, networking control and so on.

It must also complete the actual control of process

switching, because the value returned by policy

module is just referred to task ID. The structure of

executing module is shown inFig.5.

https://www.sciencedirect.com/science/article/pii/S0895717709003409#fig3
https://ars.els-cdn.com/content/image/1-s2.0-S0895717709003409-gr3.jpg
https://www.sciencedirect.com/science/article/pii/S0895717709003409#fig4
https://ars.els-cdn.com/content/image/1-s2.0-S0895717709003409-gr4.jpg
https://www.sciencedirect.com/science/article/pii/S0895717709003409#fig4
https://www.sciencedirect.com/science/article/pii/S0895717709003409#fig5

International Journal of Advances in Engineering and Management (IJAEM)

Volume 2, Issue 9, pp: 624-629 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0209624629 | Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 627

Download : Download full-size image

Fig.5.Structure of executing module.

The communication between executing

module with policy or monitoring module will be

discussed in detail in the descriptions of policy

module and monitoring module. The reason why

timer interrupt is used as the unique

communication method is that policy module needs

search for the right task from all the present tasks

regularly, and monitoring module also makes use

of this interrupt to implement the detecting for

system important data structure and file system

periodically.

3.2.Policy module

Executing module communicates with

policy module through interrupt. What it needs

from the returned value is just the ID of task that

will gain the CPU time. Then according to this ID

it completes the process switching. So policy

module needs to select the right task or process that

will obtains CPU from all the current tasks.

Therefore, the following information must be

confirmed:

•The interrupt that executing module communicates

with policy;

•All the present tasks in the system;

•Task that will gain the rights to use CPU time.

Firstly, interrupt must be

set:set_gate(&idt[n], &task_policy). Here,nis the

interrupt number of timer interrupt;idt[]is the global

interrupt description table;task_policy()is the

executing function in policy module. Considering

the communication between executing module and

monitoring module also uses timer interrupt, so

more common interrupts can be set:set_gate

(&idt[n], &kernel_module). Here, kernel_

module() is a function used to implement the

communication between executing module and

specific module (policy module or monitoring

module).

By default, the kernel_module()interrupt handling

calls the task_policy()function in the policy

module.kernel_module()can also call the executing

function in the monitoring module through proper

method, thus detecting function can be

implemented. The detailed method is discussed in

the section ―Monitoring Module‖.

Based on the interrupt, appropriate

parameters need to be passed to handling to

implement the different functions, such as process

scheduling, error handling and system detecting.

For a simple and unified interface used to

communicate between kernel modules, a data

structure must be introduced:

struct address_struct{

task_struct (*task_addr)[];

void (*function_addr)();

detect_struct *detect_addr;

};

This data structure is called as address

structure, and all the members of this structure are

address. So, task_struct(*task)[]is a pointer that

points to task array;void (*function_addr)()is a

pointer that points to the error function or process;

detect_struct (*detect_addr)is a pointer that points

the detecting address structure. This structure is

discussed in detail in section ―Monitoring Module‖.

The address of the address_structis the parameter

of timer interrupt, and will be passed to the

handling of int n. Interrupt handling decides to call

policy module or monitoring module according to

the value of address_struct. So the initial value of

address_struct is one of the set{NULL, NULL,

NULL}. If policy module is called, the value of

task_addris not NULL, while if monitoring module

is called, the value of function_addr or

detect_addris not NULL. Thus, unified interface is

constructed for the communication: timer interrupt

int n, handling kernel_module(), and address

structure address_struct.

task_policy()is the executing in policy

module that is used to find the most reasonable task

who will gain the CPU time. So task_policy()is the

implementation of the process scheduling

algorithm. According to the specific applications

and scheduling goals, task_policy()can implement

all kinds of scheduling algorithms, such as First-

Come, First-Served, Shortest Job Fist, Round-

Robin, Multiple Queues, Priority Scheduling, and

even other customized algorithm. Therefore,

process scheduling policy is separated from the

https://ars.els-cdn.com/content/image/1-s2.0-S0895717709003409-gr5.jpg

International Journal of Advances in Engineering and Management (IJAEM)

Volume 2, Issue 9, pp: 624-629 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0209624629 | Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 628

actual process switching. So, task_policy()can be

implemented as follows:

int task_policy(address_struct *addr){

//the number or ID of task will gain the CPU time.

int task_number;

//task is the pointer that points to the task array.

task_struct *task;

//get the address of task array from address

structure.

 task=addr- >task_addr;

/*the implement of the scheduling algorithm */

//return the task number or ID to kernel_module()

Return task_number;

}

task_policy() returns the task number to

kernel_module(), then kernel_module() calls the

switch_task()function in the executing module to

complete the process switching. So the parameters

that switch_task()needs are the address of task

array and the number of task which will obtain the

CPU time.

Besides the implementation of process

switch using timer interrupt, executing module and

the subfunction modules can request the active

process scheduling. In this case, we use int nin the

request scheduling function. So request scheduling

function schedule()can be defined as follows:

void schedule(void){

…

_asm{

…

int n;

…

}

…

switch_task(&task[], task_number);

}

The communication between executing module and

policy module is shown in Fig.6.

Download : Download full-size image

Fig. 6.The communication between executing

module and policy module.

3.3.Monitoring module

There are two functions for monitoring

module: error handling and system detecting

periodically. Errors discussed here is the fatal error

that can endanger the system, such as hardware

error, kernel running error, system services error,

and illegal operation error of application. Other

common bugs of applications should be captured

and handled by the application itself. Thus, the

structure of operating system can be simple, and it

is convenient to design and extend system.

As described above, monitoring module

communicates with executing module through int n

and address structure address_struct. When a fatal

error occurs in applications or system services,

executing module captures the pointer (usually is

the address) of the error programs, then the pointer

is passed to monitoring module through timer

interrupt int n. When the executing function

error_handle()receives the pointer, it can terminate

or restart the programs. If a fatal error occurs in

kernel module, monitoring module can restart the

executing module, which means initiating the

number 0 task or restarting the operating system.

Thus, system is protected from death loop. Of

course, before all the error handling operations,

necessary actions must be done to ensure the safety

of important system and user data.

As for detecting periodically of

monitoring module, some special method is

implemented using timer interrupt int nand address

structure address_struct. In Linux, the system timer

clock is defined as 10 ms. So every 10 ms,int nis

called, and executing module communicates with

policy module once. Since monitoring module can

use timer interrupt to implement system detecting,

a counter that names module_counter is set. The

initial value of module_counteris 0, when it is less

https://www.sciencedirect.com/science/article/pii/S0895717709003409#fig6
https://ars.els-cdn.com/content/image/1-s2.0-S0895717709003409-gr6.jpg

International Journal of Advances in Engineering and Management (IJAEM)

Volume 2, Issue 9, pp: 624-629 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0209624629 | Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 629

than 50, and the value of task_addr in the

address_struct is notNULL, interrupt handling calls

the task_policy(address_struct *)to implement the

process scheduling. If the value of module_counter

is 100 (that is 1s), interrupt handling calls the

system_detecting(address_struct *)to implement

the detecting for important system data structure

and file system.

The important data structures that

monitoring module detects includes: task array,

buffer head, and description tables and so on. These

data structures relate to safety and continuous

running of system directly.

As for file system detecting, disk

parameters, partition parameters and file directory

are detected by system_detecting(). Besides the

operations of file attributions and writing or

reading file in large range, special function must be

set to ensure the system safety. The communication

between executing module and monitoring module

is shown inFig.7.

Download :Download full-size image

Fig.7.The communication between executing

module and monitoring module.

IV. CONCLUSIONS
In this paper, the kernel is divided into

three independent modules according to their

functions. This architecture has modularity to

confirm the concept of modularity programming

which is convenient for design, extension and

implement of system. In addition, the

communication interface between modules is

simple and unified because it is implemented by

timer interrupt and addresses structure. Moreover,

this architecture intimately concerns with safety

and protection of user data.

The main potential problem is the

executing efficiency of system because of the extra

communication overhead of three kernel modules.

Possible improvements include: debugging is

added to error handling in monitoring module, thus

the programs can be debugged besides terminated

or restarted.

REFERENCES
[1]. [1]Andrew S. TanenbaumModern

Operating System(2008) pp. 3–6

Google Scholar

[2]. William Stallings, Operating Systems,

Internaland Design Principles, 9th Edition,

DorlingKindersley Pvt. Ltd., 2018

https://www.sciencedirect.com/science/article/pii/S0895717709003409#fig7
https://ars.els-cdn.com/content/image/1-s2.0-S0895717709003409-gr7.jpg
https://www.sciencedirect.com/science/article/pii/S0895717709003409#bb1
https://scholar.google.com/scholar_lookup?title=Modern%20Operating%20System&publication_year=2008&author=Andrew%20S.%20Tanenbaum

